# Tag Archives: modules

## Hom Functor

Fret not if you’re unfamiliar with the term functor; it’s a concept in category theory we will use implicitly without delving into the specific definition. This topic is, unfortunately, a little on the dry side but it’s a necessary evil to get … Continue reading

## Exact Sequences and the Grothendieck Group

As before, all rings are not commutative in general. Definition. An exact sequence of R-modules is a collection of R-modules and a sequence of R-module homomorphisms: such that for all i. Examples 1. The sequence is exact if and only if f … Continue reading

## Composition Series

Positive integers can be uniquely factored as a product of primes. Here, we would like to prove a counterpart for modules. Now there are two ways to “factor” a module M; a more liberal way takes a submodule N which gives us composition … Continue reading

As mentioned in the previous article, we will now describe the “bad elements” in a ring R which stops it from being semisimple. Consider the following ring: Since R is finite-dimensional over the reals, it is both artinian and noetherian. However, R is not … Continue reading

## The Group Algebra (I)

[ Note: the contents of this article overlap with a previous series on character theory. ] Let K be a field and G a finite group. The group algebra K[G] is defined to be a vector space over K with basis , where “g” here is … Continue reading

## Elementary Module Theory (III): Approaching Linear Algebra

The Hom Group Continuing from the previous installation, here’s another way of writing the universal properties for direct sums and products. Let Hom(M, N) be the set of all module homomorphisms M → N; then: (*) for any R-module N. In the case where there’re finitely … Continue reading

## Elementary Module Theory (II)

Having defined submodules, let’s proceed to quotient modules. Unlike the case of groups and rings, any submodule can give a quotient module without any additional condition imposed. Definition. Let N be a submodule of M. By definition, it’s an additive … Continue reading