Tag Archives: cokernels

Elementary Module Theory (III): Approaching Linear Algebra

The Hom Group Continuing from the previous installation, here’s another way of writing the universal properties for direct sums and products. Let Hom(M, N) be the set of all module homomorphisms M → N; then: (*) for any R-module N. In the case where there’re finitely … Continue reading

Posted in Notes | Tagged , , , , , , , , , | Leave a comment

Elementary Module Theory (II)

Having defined submodules, let’s proceed to quotient modules. Unlike the case of groups and rings, any submodule can give a quotient module without any additional condition imposed. Definition. Let N be a submodule of M. By definition, it’s an additive … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment