
Recent Posts
Archives
 June 2018
 July 2016
 June 2016
 May 2016
 March 2015
 February 2015
 January 2015
 December 2014
 December 2013
 November 2013
 July 2013
 June 2013
 May 2013
 March 2013
 February 2013
 January 2013
 December 2012
 November 2012
 October 2012
 September 2012
 August 2012
 April 2012
 March 2012
 February 2012
 January 2012
 December 2011
 November 2011
 October 2011
Categories
Meta
Pages
Tag Archives: modules
Idempotents and Decomposition
Let R be a general ring, not necessarily commutative. An element x∈R is said to be idempotent if x2 = x. Note An endomorphism f of an Rmodule M (i.e. ) is an idempotent if and only if f is a projection, i.e. M = ker(f) ⊕ im(f) and f … Continue reading
Posted in Notes
Tagged blocks, idempotents, indecomposable modules, modules, primitive idempotents
Leave a comment
Tensor Product over Noncommutative Rings
Following the earlier article on tensor products of vector spaces, we will now look at tensor products of modules over a ring R, not necessarily commutative. It turns out we have to distinguish between left and right modules now. Indeed recall … Continue reading
Posted in Notes
Tagged bimodules, hom functor, leftexact, modules, rightexact, tensor products
Leave a comment
Hom Functor
Fret not if you’re unfamiliar with the term functor; it’s a concept in category theory we will use implicitly without delving into the specific definition. This topic is, unfortunately, a little on the dry side but it’s a necessary evil to get … Continue reading
Posted in Notes
Tagged bimodules, hom functor, left modules, leftexact, modules, right modules
Leave a comment
Exact Sequences and the Grothendieck Group
As before, all rings are not commutative in general. Definition. An exact sequence of Rmodules is a collection of Rmodules and a sequence of Rmodule homomorphisms: such that for all i. Examples 1. The sequence is exact if and only if f … Continue reading
Posted in Notes
Tagged composition series, exact sequences, grothendieck group, modules, short exact sequences
Leave a comment
Composition Series
Positive integers can be uniquely factored as a product of primes. Here, we would like to prove a counterpart for modules. Now there are two ways to “factor” a module M; a more liberal way takes a submodule N which gives us composition … Continue reading
Posted in Notes
Tagged algebra, artinian, composition series, length of module, matrix rings, modules, noetherian, unique factorisation
Leave a comment
Radical of Module
As mentioned in the previous article, we will now describe the “bad elements” in a ring R which stops it from being semisimple. Consider the following ring: Since R is finitedimensional over the reals, it is both artinian and noetherian. However, R is not … Continue reading
Posted in Notes
Tagged algebra, artinian, jacobson radical, matrix rings, modules, radical of modules, semisimple rings
Leave a comment
The Group Algebra (I)
[ Note: the contents of this article overlap with a previous series on character theory. ] Let K be a field and G a finite group. The group algebra K[G] is defined to be a vector space over K with basis , where “g” here is … Continue reading
Posted in Notes
Tagged character theory, group actions, group algebras, modules, representation theory, semisimple rings, simple modules
Leave a comment