-
Recent Posts
Archives
- January 2023
- May 2020
- April 2020
- March 2020
- June 2018
- July 2016
- June 2016
- May 2016
- March 2015
- February 2015
- January 2015
- December 2014
- December 2013
- November 2013
- July 2013
- June 2013
- May 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
Categories
Meta
Pages
Tag Archives: matrix rings
Krull-Schmidt Theorem
Here, we will prove that the process of decomposing is unique, given that M is noetherian and artinian. Again, R is a ring, possibly non-commutative. Definition. A decomposition of an R-module M is an expression for non-zero modules An R-module M is said … Continue reading
Posted in Notes
Tagged indecomposable modules, krull-schmidt, local rings, matrix rings, splitting lemma, unique factorisation
Leave a comment
Jacabson Radical
Recall that the radical of the base ring R is called its Jacobson radical and denoted by J(R); this is a two-sided ideal of R. Earlier, we had proven that a ring R is semisimple if and only if it is artinian and J(R) = … Continue reading
Posted in Notes
Tagged artinian, hopkins-levitzki, jacobson radical, matrix rings, nilpotent ideals, noetherian, semisimple rings
Leave a comment
Composition Series
Positive integers can be uniquely factored as a product of primes. Here, we would like to prove a counterpart for modules. Now there are two ways to “factor” a module M; a more liberal way takes a submodule N which gives us composition … Continue reading
Posted in Notes
Tagged algebra, artinian, composition series, length of module, matrix rings, modules, noetherian, unique factorisation
Leave a comment
Radical of Module
As mentioned in the previous article, we will now describe the “bad elements” in a ring R which stops it from being semisimple. Consider the following ring: Since R is finite-dimensional over the reals, it is both artinian and noetherian. However, R is not … Continue reading
Posted in Notes
Tagged algebra, artinian, jacobson radical, matrix rings, modules, radical of modules, semisimple rings
Leave a comment
Structure of Semisimple Rings
It turns out there is a nice classification for semisimple rings. Theorem. Any semisimple ring R is a finite product: where each is a division ring and is the ring of n × n matrices with entries in D. Furthermore, the … Continue reading
Introduction to Ring Theory (8)
Matrix Rings In this post, we’ll be entering the matrix. Let R be a ring. The ring Mn×n(R) is the set of matrices whose entries are elements of R, where the addition and multiplication operations are given by the usual matrix addition … Continue reading
Posted in Notes
Tagged advanced, cramer's rule, determinants, matrix rings, ring theory, rings, simple rings
Leave a comment