Monthly Archives: January 2015

Tensor Product over Noncommutative Rings

Following the earlier article on tensor products of vector spaces, we will now look at tensor products of modules over a ring R, not necessarily commutative. It turns out we have to distinguish between left and right modules now. Indeed recall … Continue reading

Posted in Notes | Tagged , , , , , | Leave a comment

Tensor Product and Linear Algebra

Tensor products can be rather intimidating for first-timers, so we’ll start with the simplest case: that of vector spaces over a field K. Suppose V and W are finite-dimensional vector spaces over K, with bases and respectively. Then the tensor product is the vector … Continue reading

Posted in Notes | Tagged , , , , , | Leave a comment

Hom Functor

Fret not if you’re unfamiliar with the term functor; it’s a concept in category theory we will use implicitly without delving into the specific definition. This topic is, unfortunately, a little on the dry side but it’s a necessary evil to get … Continue reading

Posted in Notes | Tagged , , , , , | Leave a comment

Exact Sequences and the Grothendieck Group

As before, all rings are not commutative in general. Definition. An exact sequence of R-modules is a collection of R-modules and a sequence of R-module homomorphisms: such that for all i. Examples 1. The sequence is exact if and only if f … Continue reading

Posted in Notes | Tagged , , , , | Leave a comment

Krull-Schmidt Theorem

Here, we will prove that the process of decomposing is unique, given that M is noetherian and artinian. Again, R is a ring, possibly non-commutative. Definition. A decomposition of an R-module M is an expression for non-zero modules An R-module M is said … Continue reading

Posted in Notes | Tagged , , , , , | Leave a comment

Local Rings

Mathematicians are generally more familiar with the case of local commutative rings, so we’ll begin from there. Definition. A commutative ring R is said to be local if it has a unique maximal ideal. Note that every non-zero commutative ring has … Continue reading

Posted in Notes | Tagged , , , , | Leave a comment

Jacabson Radical

Recall that the radical of the base ring R is called its Jacobson radical and denoted by J(R); this is a two-sided ideal of R. Earlier, we had proven that a ring R is semisimple if and only if it is artinian and J(R) = … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment