# Tag Archives: direct products

## Commutative Algebra 25

Arbitrary Collection of Modules Finally, we consider the case where we have potentially infinitely many modules. Proposition 1. For a collection of A-modules , we have Proof First claim: we will show that the LHS satisfies the universal property for … Continue reading

## Commutative Algebra 9

Direct Sums and Direct Products Recall that for a ring A, a sequence of A-modules gives the A-module where the operations are defined component-wise. In this article, we will generalize the construction to an infinite collection of modules. Throughout this article, let denote … Continue reading

## Elementary Module Theory (III): Approaching Linear Algebra

The Hom Group Continuing from the previous installation, here’s another way of writing the universal properties for direct sums and products. Let Hom(M, N) be the set of all module homomorphisms M → N; then: (*) for any R-module N. In the case where there’re finitely … Continue reading