Tag Archives: group actions

Solving Permutation-Based Puzzles

Introduction In the previous article, we described the Schreier-Sims algorithm. Given a small subset which generates the permutation group G, the algorithm constructs a sequence such that for: we have a small generating set for each Specifically, via the Sims … Continue reading

Posted in Uncategorized | Tagged , , , , , | 2 Comments

Schreier-Sims Algorithm

Introduction Throughout this article, we let G be a subgroup of generated by a subset  We wish to consider the following questions. Given A, how do we compute the order of G? How do we determine if an element lies in G? Assuming , how … Continue reading

Posted in Uncategorized | Tagged , , , , , , | Leave a comment

Polynomials and Representations XXIV

Specht Modules Till now, our description of the irreps of are rather abstract. It would be helpful to have a more concrete construction of these representations – one way is via Specht modules. First write Thus if , the only common irrep between … Continue reading

Posted in Uncategorized | Tagged , , , , | Leave a comment

Polynomials and Representations XIX

Representations of the Symmetric Group Let [d] be the set {1,…,d}, and Sd be the group of bijections  From here on, we shall look at the representations of Note that this requires a good understanding of representation theory (character theory) of finite groups. To start, let … Continue reading

Posted in Uncategorized | Tagged , , , | Leave a comment

The Group Algebra (I)

[ Note: the contents of this article overlap with a previous series on character theory. ] Let K be a field and G a finite group. The group algebra K[G] is defined to be a vector space over K with basis , where “g” here is … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment

Burnside’s Lemma and Polya Enumeration Theorem (2)

[ Acknowledgement: all the tedious algebraic expansions in this article were performed by wolframalpha. ] Counting Graphs One of the most surprising applications of Burnside’s lemma and Polya enumeration theorem is in counting the number of graphs up to isomorphism. … Continue reading

Posted in Notes | Tagged , , , , , , , , | Leave a comment

Burnside’s Lemma and Polya Enumeration Theorem (1)

[ Note: this article assumes you know some rudimentary theory of group actions. ] Let’s consider the following combinatorial problem. Problem. ABC is a given equilateral triangle. We wish to colour each of the three vertices A, B and C by … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment

Intermediate Group Theory (3)

Automorphisms and Conjugations of G We’ve seen how groups can act on sets via bijections. If the underlying set were endowed with a group structure, we can restrict our attention to bijections which preserve the group operation. Definition. An automorphism of … Continue reading

Posted in Notes | Tagged , , , , , | Leave a comment

Intermediate Group Theory (2)

This is a continuation from the previous post. Let G act on set X, but now we assume that both G and X are finite. Since X is a disjoint union of transitive G-sets, and each transitive G-set is isomorphic to G/H for some subgroup H ≤ G, it follows that … Continue reading

Posted in Notes | Tagged , , , , , | Leave a comment