
Recent Posts
Archives
 May 2020
 April 2020
 March 2020
 June 2018
 July 2016
 June 2016
 May 2016
 March 2015
 February 2015
 January 2015
 December 2014
 December 2013
 November 2013
 July 2013
 June 2013
 May 2013
 March 2013
 February 2013
 January 2013
 December 2012
 November 2012
 October 2012
 September 2012
 August 2012
 April 2012
 March 2012
 February 2012
 January 2012
 December 2011
 November 2011
 October 2011
Categories
Meta
Pages
Tag Archives: groups
Free Groups and Tiling
Introduction Consider the following simple problem. Prove that the shape on the left cannot be completely tiled by 20 polygons of the types shown on the right. The solution is rather simple: colour the shape in the following manner. This … Continue reading
Posted in Uncategorized
Tagged combinatorics, free groups, group theory, groups, polyominoes, tiling, words
Leave a comment
Quick Guide to Character Theory (I): Foundation
Character theory is one of the most beautiful topics in undergraduate mathematics; the objective is to study the structure of a finite group G by letting it act on vector spaces. Earlier, we had already seen some interesting results (e.g. proof … Continue reading
Posted in Notes
Tagged character theory, dual spaces, fields, group algebras, groups, modules, representation theory
Leave a comment
Topology: More on Algebra and Topology
We’ve arrived at the domain where topology meets algebra. Thus we have to proceed carefully to ensure that the topology of our algebraic constructions are wellbehaved. Let’s look at topological groups again. Our first task is to show that the … Continue reading
Posted in Notes
Tagged algebra, connected spaces, groups, isomorphism theorems, open maps, orthogonal groups, quotient topology, rings, topology
Leave a comment
Topology: Topological Groups
This article assumes you know some basic group theory. The motivation here is to consider groups whose underlying operations are continuous with respect to its topology. Definition. A topological group G is a group with an underlying topology such that: the … Continue reading
Posted in Notes
Tagged advanced, compact sets, connected components, groups, homeomorphisms, separation axioms, topological groups, topology
Leave a comment
Introduction to Ring Theory (6)
Let’s keep stock of what we’ve covered so far for ring theory, and compare it to the case of groups. There are loads of parallels between the two cases. G is a group R is a ring. Abelian groups. Commutative … Continue reading
Casual Introduction to Group Theory (5)
Normal Subgroups and Group Quotients [ This corresponds to approximately chapter V of the old blog. ] We’ve already seen that if H ≤ G is a subgroup, then G is a disjoint union of (left) cosets of H in G. We’d like to use the set … Continue reading
Posted in Notes
Tagged advanced, group quotients, group theory, groups, normal subgroups, subgroups
Leave a comment
Casual Introduction to Group Theory (4)
Cosets and Lagrange’s Theorem [ This post approximately corresponds to chapter IV from the old group theory blog. ] The main theorem in this post is Lagrange’s theorem: if H ≤ G is a subgroup then H divides G. But first, let’s consider … Continue reading
Posted in Notes
Tagged advanced, cosets, double cosets, group theory, groups, lagrange's theorem
Leave a comment
Casual Introduction to Group Theory (3)
Subgroups [ This article approximately corresponds to chapter III of the group theory blog. ] Let G be a group under operation *. If H is a subset of G, we wish to turn H into a group by inheriting the operation from G. Clearly, … Continue reading
Posted in Notes
Tagged cyclic groups, generated groups, group theory applications, groups, intermediate, number theory, subgroups
Leave a comment