
Recent Posts
Archives
 March 2023
 January 2023
 May 2020
 April 2020
 March 2020
 June 2018
 July 2016
 June 2016
 May 2016
 March 2015
 February 2015
 January 2015
 December 2014
 December 2013
 November 2013
 July 2013
 June 2013
 May 2013
 March 2013
 February 2013
 January 2013
 December 2012
 November 2012
 October 2012
 September 2012
 August 2012
 April 2012
 March 2012
 February 2012
 January 2012
 December 2011
 November 2011
 October 2011
Categories
Meta
Pages
Tag Archives: noetherian
Commutative Algebra 55
Exactness of Completion Throughout this article, A denotes a filtered ring. Proposition 1. Let be a short exact sequence of Amodules. Suppose M is filtered, inducing filtrations on N and P. Then is also exact as modules. Proof Without loss of … Continue reading
Posted in Advanced Algebra
Tagged aadic filtrations, artinrees lemma, blowup algebras, completions, filtrations, limits, noetherian
Leave a comment
Commutative Algebra 43
Catenary Rings Let us look at prime chains in greater detail. Definition. Let be a chain of prime ideals of a ring A. We say the chain is saturated if for any prime ideal of A, ; maximal if it … Continue reading
Posted in Advanced Algebra
Tagged algebras, catenary rings, krull dimension, noether normalization, noetherian
2 Comments
Commutative Algebra 38
Artinian Rings The main result we wish to prove is the following. Theorem. A ring A is artinian if and only if it is noetherian and , where denotes the Krull dimension. Note Recall that means all prime ideals of A … Continue reading
Commutative Algebra 37
Artinian Modules Instead of the ascending chain condition, we can take its reverse. Definition. Let M be an Amodule. Consider the set of submodules of M, ordered by inclusion, i.e. if and only if . We say M is artinian … Continue reading
Posted in Advanced Algebra
Tagged artinian, composition factors, composition series, length of module, noetherian, simple modules
Leave a comment
Commutative Algebra 36
In this article, we will study the topology of Spec A when A is noetherian. For starters, let us consider irreducible topological spaces in greater detail. Irreducible Spaces Recall that an irreducible topological space is a nonempty space X satisfying any of the … Continue reading
Commutative Algebra 35
Noetherian Modules Through this article, A is a fixed ring. For the first two sections, all modules are over A. Recall that a submodule of a finitely generated module is not finitely generated in general. This will not happen if we constrain … Continue reading
Posted in Advanced Algebra
Tagged flat modules, hilbert basis theorem, ideals, modules, noetherian, projective modules
Leave a comment
Commutative Algebra 15
Unique Factorization Through this article and the next few ones, we will explore unique factorization in rings. The inspiration, of course, comes from ℤ. Here is an application of unique factorization. Warning: not all steps may make sense to the … Continue reading
Posted in Advanced Algebra
Tagged integral domains, irreducibles, noetherian, primes, UFDs, unique factorisation
Leave a comment
Commutative Algebra 12
Some Results on Posets In this article we have two goals in mind: to introduce the idea of noetherian posets, and to state Zorn’s lemma and give some examples. The latter is of utmost importance in diverse areas of mathematics. … Continue reading
Posted in Advanced Algebra
Tagged axiom of choice, noetherian, posets, totally ordered sets, zorn's lemma
Leave a comment
Jacabson Radical
Recall that the radical of the base ring R is called its Jacobson radical and denoted by J(R); this is a twosided ideal of R. Earlier, we had proven that a ring R is semisimple if and only if it is artinian and J(R) = … Continue reading
Posted in Notes
Tagged artinian, hopkinslevitzki, jacobson radical, matrix rings, nilpotent ideals, noetherian, semisimple rings
Leave a comment
Composition Series
Positive integers can be uniquely factored as a product of primes. Here, we would like to prove a counterpart for modules. Now there are two ways to “factor” a module M; a more liberal way takes a submodule N which gives us composition … Continue reading
Posted in Notes
Tagged algebra, artinian, composition series, length of module, matrix rings, modules, noetherian, unique factorisation
Leave a comment