Tag Archives: simple modules

Modular Representation Theory (III)

Let’s work out some explicit examples of modular characters. First, we have a summary of the main results. Let be the modular characters of the simple k[G]-modules; they form a basis of Let  be those of the projective indecomposable k[G]-modules; they form a basis … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment

Noetherian and Artinian Rings and Modules

We saw the case of the semisimple ring R, which is a (direct) sum of its simple left ideals. Such a ring turned out to be nothing more than a finite product of matrix algebras. One asks if there is a … Continue reading

Posted in Notes | Tagged , , , , | Leave a comment

The Group Algebra (III)

As alluded to at the end of the previous article, we shall consider the case where K is algebraically closed, i.e. every polynomial with coefficients in K factors as a product of linear polynomials. E.g. K = C is a common choice. Having assumed … Continue reading

Posted in Notes | Tagged , , , , , | Leave a comment

The Group Algebra (I)

[ Note: the contents of this article overlap with a previous series on character theory. ] Let K be a field and G a finite group. The group algebra K[G] is defined to be a vector space over K with basis , where “g” here is … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment

Simple Modules

We briefly talked about modules over a (possibly non-commutative) ring R. An important aspect of modules is that unlike vector spaces, modules are usually not free, i.e. they don’t have a basis. For example, take the Z-module given by Z/2Z. [ Recall: a Z-module is … Continue reading

Posted in Notes | Tagged , , , , , | 2 Comments

Elementary Module Theory (I)

Modules can be likened to “vector spaces for rings”. To be specific, we shall see later that a vector space is precisely a module over a field (or in some cases, a division ring). This set of notes assumes the … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment

Quick Guide to Character Theory (II): Main Theory

Reminder: throughout this series, G is a finite group and K is a field. All K-vector spaces are assumed to be finite-dimensional over K. G4. Maschke’s Theorem If is a K[G]-submodule, it turns out V is isomorphic to the direct sum of W and some other submodule W’. … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment