Tag Archives: metric spaces

Commutative Algebra 54

Filtered Rings Definition. Let A be a ring. A filtration on A is a sequence of additive subgroups such that for any . A filtered ring is a ring with a designated filtration. Note Since , in fact each is … Continue reading

Posted in Advanced Algebra | Tagged , , , , , , | 5 Comments

Topology: Sequentially Compact Spaces and Compact Spaces

We’ve arrived at possibly the most confusing notion in topology/analysis. First, we wish to fulfil an earlier promise: to prove that if C is a closed and bounded subset of R and f : R → R is continuous, then f(C) is closed and bounded. [ As … Continue reading

Posted in Notes | Tagged , , , , , | 4 Comments

Topology: Complete Metric Spaces

[ This article was updated on 8 Mar 13; the universal property is now in terms of Cauchy-continuous maps. ]  On an intuitive level, a complete metric space is one where there are “no gaps”. Formally, we have: Definition. A … Continue reading

Posted in Notes | Tagged , , , , , , | 10 Comments

Topology: Hausdorff Spaces and Dense Subsets

Hausdorff Spaces Recall that we’d like a condition on a topological space X such that if a sequence converges, its limit is unique. A sufficient condition is given by the following: Definition. A topological space X is said to be Hausdorff if … Continue reading

Posted in Notes | Tagged , , , , , , | 2 Comments

Topology: Cauchy Sequences and Uniform Continuity

 [ Updated on 8 Mar 13 to include Cauchy-continuity and added answers to exercises. ] We wish to generalise the concept of Cauchy sequences to metric spaces. Recall that on an intuitive level, a Cauchy sequence is one where the … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment

Topology: Nets and Points of Accumulation

Recall that a sequence in a topological space X converges to a in X if the function f : N* → X which takes is continuous at . Unrolling the definition, it means that for any open subset U of X containing a, the set contains (N, ∞] for some N. In … Continue reading

Posted in Notes | Tagged , , , , , , , , , | Leave a comment

Topology: Continuous Maps

Continuity in Metric Spaces Following the case of real analysis, let’s define continuous functions via the usual ε-δ definition. Definition. Let (X, d) and (Y, d’) be two metric spaces. A function f : X → Y is said to be … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment

Topology: Product Spaces (I)

In this article, we consider the product of two topological spaces. To motivate our definition, we first begin with metric spaces (X, dX) and (Y, dY). Letting Z = X × Y be the set-theoretic product, we wish to define a metric on Z from dX and … Continue reading

Posted in Notes | Tagged , , , , , | Leave a comment

Topology: Subspaces

First, suppose (X, d) is a metric space. If Y is a subset of X, then one can restrict the metric to , i.e. for any , we set d’(y, y’) := d(y, y’). It’s not hard to show that the resulting function is a metric on Y. … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment

Topology: Basic Definitions

Motivation and Definition While studying analysis, one notices that many important concepts can be defined in terms of “open sets”. One gets the inkling that this concept is critical in forming our notions of continuity, limits etc. In this article, we … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment