-
Recent Posts
Archives
- March 2023
- January 2023
- May 2020
- April 2020
- March 2020
- June 2018
- July 2016
- June 2016
- May 2016
- March 2015
- February 2015
- January 2015
- December 2014
- December 2013
- November 2013
- July 2013
- June 2013
- May 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
Categories
Meta
Pages
Tag Archives: bases
Topology: Disjoint Unions
Disjoint Unions Let X and Y be topological spaces and be a set-theoretic disjoint union. We wish to define a topology on Z in a most natural way. Definition. The topology on is defined to be: It’s almost trivial to check that this … Continue reading
Posted in Notes
Tagged advanced, bases, connected spaces, disjoint union topology, metrisable topology, product topology, sub-bases, topology
Leave a comment
Topology: Subspaces
First, suppose (X, d) is a metric space. If Y is a subset of X, then one can restrict the metric to , i.e. for any , we set d’(y, y’) := d(y, y’). It’s not hard to show that the resulting function is a metric on Y. … Continue reading
Posted in Notes
Tagged advanced, bases, clopen sets, homeomorphisms, metric spaces, subbases, subspaces, topology
Leave a comment
Topology: Bases and Subbases
Bases Recall that though a subring or ideal of a ring may be rather huge, it often suffices to specify just a few elements which will generate the subring or ideal. Likewise, in a topology, one can specify a few … Continue reading
Posted in Notes
Tagged bases, furstenberg's proof, generated topology, infinitude of primes, open balls, open subsets, subbases, topology
Leave a comment