
Recent Posts
Archives
 May 2020
 April 2020
 March 2020
 June 2018
 July 2016
 June 2016
 May 2016
 March 2015
 February 2015
 January 2015
 December 2014
 December 2013
 November 2013
 July 2013
 June 2013
 May 2013
 March 2013
 February 2013
 January 2013
 December 2012
 November 2012
 October 2012
 September 2012
 August 2012
 April 2012
 March 2012
 February 2012
 January 2012
 December 2011
 November 2011
 October 2011
Categories
Meta
Pages
Tag Archives: filtrations
Commutative Algebra 57
Continuing from the previous article, A denotes a noetherian ring and all Amodules are finitely generated. As before all completions are taken to be stable for a fixed ideal . Noetherianness We wish to prove that the adic completion of … Continue reading
Posted in Advanced Algebra
Tagged aadic filtrations, algebraic geometry, analysis, completion, filtrations, hensels lemma, local rings, padic
Leave a comment
Commutative Algebra 55
Exactness of Completion Throughout this article, A denotes a filtered ring. Proposition 1. Let be a short exact sequence of Amodules. Suppose M is filtered, inducing filtrations on N and P. Then is also exact as modules. Proof Without loss of … Continue reading
Posted in Advanced Algebra
Tagged aadic filtrations, artinrees lemma, blowup algebras, completions, filtrations, limits, noetherian
Leave a comment
Commutative Algebra 54
Filtered Rings Definition. Let A be a ring. A filtration on A is a sequence of additive subgroups such that for any . A filtered ring is a ring with a designated filtration. Note Since , in fact each is … Continue reading
Posted in Advanced Algebra
Tagged completions, filtrations, formal power series, limits, metric spaces, padic, ultrametric
Leave a comment