Tag Archives: closed subsets

Topology: Closure

Suppose Y is a subset of a topological space X. We define cl(Y) to be the “smallest” closed subset containing Y. Its formal definition is as follows. Let Σ be the collection of all closed subsets containing Y. Note that , so Σ is not empty. … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment

Topology: Nets and Points of Accumulation

Recall that a sequence in a topological space X converges to a in X if the function f : N* → X which takes is continuous at . Unrolling the definition, it means that for any open subset U of X containing a, the set contains (N, ∞] for some N. In … Continue reading

Posted in Notes | Tagged , , , , , , , , , | Leave a comment

Topology: Basic Definitions

Motivation and Definition While studying analysis, one notices that many important concepts can be defined in terms of “open sets”. One gets the inkling that this concept is critical in forming our notions of continuity, limits etc. In this article, we … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment

Basic Analysis: Closed Subsets and Uniform Continuity

Let’s consider another question: suppose f : D → R is continuous, where D is a subset of R. If (xn) is a sequence in D converging to some real L, is it true that (f(xn)) is also convergent? Now if L is in D, then we know that (f(xn)) → (f(L)). … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment