Tag Archives: points of accumulation

Topology: Product Spaces (II)

The Box Topology Following an earlier article on products of two topological spaces, we’ll now talk about a product of possibly infinitely many topological spaces. Suppose is a collection of topological spaces indexed by I, and we wish to define … Continue reading

Posted in Notes | Tagged , , , , , , , , , | Leave a comment

Topology: Closure

Suppose Y is a subset of a topological space X. We define cl(Y) to be the “smallest” closed subset containing Y. Its formal definition is as follows. Let Σ be the collection of all closed subsets containing Y. Note that , so Σ is not empty. … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment

Topology: Nets and Points of Accumulation

Recall that a sequence in a topological space X converges to a in X if the function f : N* → X which takes is continuous at . Unrolling the definition, it means that for any open subset U of X containing a, the set contains (N, ∞] for some N. In … Continue reading

Posted in Notes | Tagged , , , , , , , , , | Leave a comment

Basic Analysis: Closed Subsets and Uniform Continuity

Let’s consider another question: suppose f : D → R is continuous, where D is a subset of R. If (xn) is a sequence in D converging to some real L, is it true that (f(xn)) is also convergent? Now if L is in D, then we know that (f(xn)) → (f(L)). … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment

Basic Analysis: Limits and Continuity (2)

Previously, we defined continuous limits and proved some basic properties. Here, we’ll try to port over more results from the case of limits of sequences. Monotone Convergence Theorem. If f(x) is increasing on the open interval (c, a) and has … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment