Tag Archives: subspaces

Topology: Product Spaces (II)

The Box Topology Following an earlier article on products of two topological spaces, we’ll now talk about a product of possibly infinitely many topological spaces. Suppose is a collection of topological spaces indexed by I, and we wish to define … Continue reading

Posted in Notes | Tagged , , , , , , , , , | Leave a comment

Topology: Interior

Let Y be a subset of a topological space X. In the previous article, we defined the closure of Y as the smallest closed subset of X containing Y. Dually, we shall now define the interior of Y to be the largest open subset contained in … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment

Topology: Continuous Maps

Continuity in Metric Spaces Following the case of real analysis, let’s define continuous functions via the usual ε-δ definition. Definition. Let (X, d) and (Y, d’) be two metric spaces. A function f : X → Y is said to be … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment

Topology: Product Spaces (I)

In this article, we consider the product of two topological spaces. To motivate our definition, we first begin with metric spaces (X, dX) and (Y, dY). Letting Z = X × Y be the set-theoretic product, we wish to define a metric on Z from dX and … Continue reading

Posted in Notes | Tagged , , , , , | Leave a comment

Topology: Subspaces

First, suppose (X, d) is a metric space. If Y is a subset of X, then one can restrict the metric to , i.e. for any , we set d’(y, y’) := d(y, y’). It’s not hard to show that the resulting function is a metric on Y. … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment