
Recent Posts
Archives
 March 2023
 January 2023
 May 2020
 April 2020
 March 2020
 June 2018
 July 2016
 June 2016
 May 2016
 March 2015
 February 2015
 January 2015
 December 2014
 December 2013
 November 2013
 July 2013
 June 2013
 May 2013
 March 2013
 February 2013
 January 2013
 December 2012
 November 2012
 October 2012
 September 2012
 August 2012
 April 2012
 March 2012
 February 2012
 January 2012
 December 2011
 November 2011
 October 2011
Categories
Meta
Pages
Tag Archives: universal properties
Commutative Algebra 50
Adjoint Functors Adjoint functors are a general construct often used for describing universal properties (among other things). Take two categories and . Definition. Covariant functors and are said to be adjoint if we have isomorphisms which are natural in A and … Continue reading
Posted in Advanced Algebra
Tagged adjoint functors, category theory, colimits, hom functor, leftexact, limits, rightexact, tensor products, universal properties
2 Comments
Commutative Algebra 49
Morphism of Diagrams Throughout this article denotes a category and J is an index category. Definition Given diagrams , a morphism is a natural transformation . Thus we have the category of all diagrams in of type J, which we … Continue reading
Posted in Advanced Algebra
Tagged category theory, colimits, coproducts, limits, products, pullbacks, pushouts, universal properties
Leave a comment
Commutative Algebra 28
Tensor Products In this article (and the next few), we will discuss tensor products of modules over a ring. Here is a motivating example of tensor products. Example If and are real vector spaces, then is the vector space with … Continue reading
Posted in Advanced Algebra
Tagged bilinear maps, distributive property, modules, tensor product, universal properties
2 Comments
Commutative Algebra 24
Quotient vs Localization Taking the quotient and localization are two sides of the same coin when we look at . Quotient removes the “small” prime ideals in – it only keeps the prime ideals containing . Localization removes the “large” … Continue reading
Posted in Advanced Algebra
Tagged algebras, exact functors, induced modules, localization, universal properties
2 Comments
Commutative Algebra 22
Localization Recall that given an integral domain, there is a canonical way to construct the “smallest field containing it”, its field of fractions. Here, we will generalize this construction to arbitrary rings. We let A be a fixed ring throughout. Definition. … Continue reading
Posted in Advanced Algebra
Tagged field of fractions, ideals, localization, universal properties
Leave a comment
Commutative Algebra 9
Direct Sums and Direct Products Recall that for a ring A, a sequence of Amodules gives the Amodule where the operations are defined componentwise. In this article, we will generalize the construction to an infinite collection of modules. Throughout this article, let denote … Continue reading
Posted in Advanced Algebra
Tagged direct products, direct sums, modules, rings, universal properties
5 Comments
Polynomials and Representations XXXVII
Notations and Recollections For a partition , one takes its Young diagram comprising of boxes. A filling is given by a function for some positive integer m. When m=d, we will require the filling to be bijective, i.e. T contains {1,…,d} and each element occurs exactly … Continue reading
Tensor Product and Linear Algebra
Tensor products can be rather intimidating for firsttimers, so we’ll start with the simplest case: that of vector spaces over a field K. Suppose V and W are finitedimensional vector spaces over K, with bases and respectively. Then the tensor product is the vector … Continue reading
Posted in Notes
Tagged bilinear maps, duals, linear algebra, tensor algebra, tensor products, universal properties
Leave a comment
Topology: Quotients of Topological Groups
Topology for Coset Space This is really a continuation from the previous article. Let G be a topological group and H a subgroup of G. The collection of left cosets G/H is then given the quotient topology. This quotient space, however, satisfies an additional … Continue reading
Posted in Notes
Tagged advanced, group quotients, open maps, quotient topology, topological groups, topology, universal properties
Leave a comment
Topology: Quotient Topology and Gluing
In topology, there’s the concept of gluing points or subspaces together. For example, take the closed interval X = [0, 1] and glue the endpoints 0 and 1 together. Pictorially, we get: That looks like a circle, but to prove it’s … Continue reading
Posted in Notes
Tagged advanced, gluing, klein bottle, mobius strip, quotient topology, topological groups, topology, universal properties
2 Comments