Tag Archives: universal properties

Polynomials and Representations XXXVII

Notations and Recollections For a partition , one takes its Young diagram comprising of boxes. A filling is given by a function for some positive integer m. When m=d, we will require the filling to be bijective, i.e. T contains {1,…,d} and each element occurs exactly … Continue reading

Posted in Uncategorized | Tagged , , , , , , | Leave a comment

Tensor Product and Linear Algebra

Tensor products can be rather intimidating for first-timers, so we’ll start with the simplest case: that of vector spaces over a field K. Suppose V and W are finite-dimensional vector spaces over K, with bases and respectively. Then the tensor product is the vector … Continue reading

Posted in Notes | Tagged , , , , , | Leave a comment

Topology: Quotients of Topological Groups

Topology for Coset Space This is really a continuation from the previous article. Let G be a topological group and H a subgroup of G. The collection of left cosets G/H is then given the quotient topology. This quotient space, however, satisfies an additional … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment

Topology: Quotient Topology and Gluing

In topology, there’s the concept of gluing points or subspaces together. For example, take the closed interval X = [0, 1] and glue the endpoints 0 and 1 together. Pictorially, we get: That looks like a circle, but to prove it’s … Continue reading

Posted in Notes | Tagged , , , , , , , | 2 Comments

Topology: Complete Metric Spaces

[ This article was updated on 8 Mar 13; the universal property is now in terms of Cauchy-continuous maps. ]  On an intuitive level, a complete metric space is one where there are “no gaps”. Formally, we have: Definition. A … Continue reading

Posted in Notes | Tagged , , , , , , | 10 Comments

Topology: Product Spaces (II)

The Box Topology Following an earlier article on products of two topological spaces, we’ll now talk about a product of possibly infinitely many topological spaces. Suppose is a collection of topological spaces indexed by I, and we wish to define … Continue reading

Posted in Notes | Tagged , , , , , , , , , | Leave a comment

Intermediate Group Theory (6)

In this post, we’ll only focus on additive abelian groups. By additive, we mean the underlying group operation is denoted by +. The identity and inverse of x are denoted by 0 and –x respectively. Similarly, 2x+3y refers to x+x+y+y+y. Etc … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment