Category Archives: Notes

Structure of Semisimple Rings

It turns out there is a nice classification for semisimple rings. Theorem. Any semisimple ring R is a finite product: where each is a division ring and is the ring of n × n matrices with entries in D. Furthermore, the … Continue reading

Posted in Notes | Tagged , , , | Leave a comment

Semisimple Rings and Modules

After discussing simple modules, the next best thing is to look at semisimple modules, which are just direct sums of simple modules. Here’s a summary of the results we’ll prove: A module is semisimple iff it is a sum of simple … Continue reading

Posted in Notes | Tagged , , , | Leave a comment

Simple Modules

We briefly talked about modules over a (possibly non-commutative) ring R. An important aspect of modules is that unlike vector spaces, modules are usually not free, i.e. they don’t have a basis. For example, take the Z-module given by Z/2Z. [ Recall: a Z-module is … Continue reading

Posted in Notes | Tagged , , , , , | 2 Comments

From Euler Characteristics to Cohomology (II)

Boundary Maps Here’s a brief recap of the previous article: we learnt that in refining a cell decomposition of an object M, we can, at each step, pick an i-dimensional cell and divide it in two. In this way, we … Continue reading

Posted in Notes | Tagged , , , , , , , | 2 Comments

From Euler Characteristics to Cohomology (I)

[ Warning: this is primarily an expository article, so the proofs are not airtight, but they should be sufficiently convincing. ] The five platonic solids were well-known among the ancient Greeks (V, E, F denote the number of vertices, edges and faces respectively): … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment

Elementary Module Theory (IV): Linear Algebra

Throughout this article, a general ring is denoted R while a division ring is denoted D. Dimension of a Vector Space First, let’s consider the dimension of a vector space V over D, denoted dim(V). If W is a subspace of V, we proved earlier that … Continue reading

Posted in Notes | Tagged , , , , | Leave a comment

Elementary Module Theory (III): Approaching Linear Algebra

The Hom Group Continuing from the previous installation, here’s another way of writing the universal properties for direct sums and products. Let Hom(M, N) be the set of all module homomorphisms M → N; then: (*) for any R-module N. In the case where there’re finitely … Continue reading

Posted in Notes | Tagged , , , , , , , , , | Leave a comment

Elementary Module Theory (II)

Having defined submodules, let’s proceed to quotient modules. Unlike the case of groups and rings, any submodule can give a quotient module without any additional condition imposed. Definition. Let N be a submodule of M. By definition, it’s an additive … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment

Elementary Module Theory (I)

Modules can be likened to “vector spaces for rings”. To be specific, we shall see later that a vector space is precisely a module over a field (or in some cases, a division ring). This set of notes assumes the … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment

Quick Guide to Character Theory (III): Examples and Further Topics

G10(a). Character Table of S4 Let’s construct the character table for . First, we have the trivial and alternating representations (see examples 1 and 2 in G1), both of which are clearly irreducible. Next, the action of G on {1, 2, 3, … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment