Tag Archives: division rings

The Group Algebra (III)

As alluded to at the end of the previous article, we shall consider the case where K is algebraically closed, i.e. every polynomial with coefficients in K factors as a product of linear polynomials. E.g. K = C is a common choice. Having assumed … Continue reading

Posted in Notes | Tagged , , , , , | Leave a comment

Structure of Semisimple Rings

It turns out there is a nice classification for semisimple rings. Theorem. Any semisimple ring R is a finite product: where each is a division ring and is the ring of n × n matrices with entries in D. Furthermore, the … Continue reading

Posted in Notes | Tagged , , , | Leave a comment

Simple Modules

We briefly talked about modules over a (possibly non-commutative) ring R. An important aspect of modules is that unlike vector spaces, modules are usually not free, i.e. they don’t have a basis. For example, take the Z-module given by Z/2Z. [ Recall: a Z-module is … Continue reading

Posted in Notes | Tagged , , , , , | 2 Comments

Introduction to Ring Theory (1)

Recall that in groups, one has only a binary operation *. Rings are algebraic structures with addition and multiplication operations – and consistency is ensured by the distributive property. Definition. A ring R is a set together with two binary operations: … Continue reading

Posted in Notes | Tagged , , , , , , , , , , , | Leave a comment