Tag Archives: zariski topology

Commutative Algebra 36

In this article, we will study the topology of Spec A when A is noetherian. For starters, let us consider irreducible topological spaces in greater detail. Irreducible Spaces Recall that an irreducible topological space is a non-empty space X satisfying any of the … Continue reading

Posted in Advanced Algebra | Tagged , , , , | Leave a comment

Commutative Algebra 23

Localization and Spectrum Recall that the ideals of correspond to a subset of the ideals of A. If we restrict ourselves to prime ideals, we get the following nice bijection. Theorem 1. The above gives a bijection between Useful trick If … Continue reading

Posted in Advanced Algebra | Tagged , , , , , , | 12 Comments

Commutative Algebra 14

Basic Open Sets For , let , an open subset of Spec A. Note that . Proposition 1. The collection of over all forms a basis for the topology of . Proof Let be an open subset of Spec A. Suppose … Continue reading

Posted in Advanced Algebra | Tagged , , , , , , , , | Leave a comment

Commutative Algebra 13

Zariski Topology for Rings In this article, we generalize earlier results in algebraic geometry to apply to general rings. Recall that points on an affine variety V correspond to maximal ideals . For general rings, we have to switch to … Continue reading

Posted in Advanced Algebra | Tagged , , , , , , | Leave a comment

Commutative Algebra 4

More Concepts in Algebraic Geometry As before, k denotes an algebraically closed field. Recall that we have a bijection between radical ideals of and closed subsets of . The bijection reverses the inclusion so if and only if . Not too … Continue reading

Posted in Advanced Algebra | Tagged , , , , , | 7 Comments

Commutative Algebra 3

Algebraic Geometry Concepts We have decided to introduce, at this early point, some basics of algebraic geometry in order to motivate the later concepts. In summary, algebraic geometry studies solutions to polynomial equations over a field. First we consider a … Continue reading

Posted in Advanced Algebra | Tagged , , , , , , , | Leave a comment