Tag Archives: advanced

Basic Analysis: Limits and Continuity (3)

Let’s consider multivariate functions where . To that end, we need the Euclidean distance function on Rn. If x = (x1, x2, …, xn) is in Rn, we define: Note that |x| = 0 if and only if x is the zero vector 0. Now we are ready … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment

Basic Analysis: Limits and Continuity (2)

Previously, we defined continuous limits and proved some basic properties. Here, we’ll try to port over more results from the case of limits of sequences. Monotone Convergence Theorem. If f(x) is increasing on the open interval (c, a) and has … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment

Basic Analysis: Limits and Continuity (1)

[ This is a continuation of the series on Basic Analysis: Sequence Convergence. ] In this article, we’ll describe rigourously what it means to say things like . First, we define a punctured neighbourhood of a real number a to be … Continue reading

Posted in Notes | Tagged , , , | Leave a comment

Introduction to Ring Theory (8)

Matrix Rings In this post, we’ll be entering the matrix. Let R be a ring. The ring Mn×n(R) is the set of matrices whose entries are elements of R, where the addition and multiplication operations are given by the usual matrix addition … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment

Introduction to Ring Theory (5)

Our first order of the day is to state the correspondence between the ideals and subrings of R/I and those of R. This is totally analogous to the case of groups. Theorem. Let I be an ideal of R. There are 1-1 … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment

Introduction to Ring Theory (3)

Ideals and Ring Quotients Suppose I is a subgroup of (R, +). Since + is abelian, I is automatically a normal subgroup and we get the group quotient (R/I, +). One asks when we can define the product operation on R/I. To be specific, each … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment

Introduction to Ring Theory (1)

Recall that in groups, one has only a binary operation *. Rings are algebraic structures with addition and multiplication operations – and consistency is ensured by the distributive property. Definition. A ring R is a set together with two binary operations: … Continue reading

Posted in Notes | Tagged , , , , , , , , , , , | Leave a comment

Intermediate Group Theory (6)

In this post, we’ll only focus on additive abelian groups. By additive, we mean the underlying group operation is denoted by +. The identity and inverse of x are denoted by 0 and –x respectively. Similarly, 2x+3y refers to x+x+y+y+y. Etc … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment

Intermediate Group Theory (5)

Free Groups To motivate the concept of free groups, let’s consider some typical group G and elements a, b of G. Recall that , the subgroup generated by {a, b}, is defined to be the intersection of all subgroups of G containing a and b. Immediately, we see … Continue reading

Posted in Notes | Tagged , , , , | Leave a comment

Intermediate Group Theory (4)

Applications We’ll use the results that we obtained in the previous two posts to obtain some very nice results about finite groups. Example 1. A finite group G of order p2 is isomorphic to either Z/p2 or (Z/p) × (Z/p). In particular, it … Continue reading

Posted in Notes | Tagged , , , , , | Leave a comment