Tag Archives: commutative rings

Topics in Commutative Rings: Unique Factorisation (3)

Example 1: The Gaussian Integers Z[i] Let’s pick the norm function N : Z[i]-{0} → N where N(a+bi) = (a+bi)(a–bi) = a2+b2. We know that N is a multiplicative function, i.e. N(r)N(s) = N(rs). Instead of checking this by brute force, we write N(x) = x·xc, where (a+bi)c = a-bi is the conjugate of a+bi. It’s easy to … Continue reading

Posted in Notes | Tagged , , , , , , , , , , , | Leave a comment

Topics in Commutative Rings: Unique Factorisation (2)

In the previous article, we imposed certain finiteness conditions on the ring (specifically a.c.c. on principal ideals: that every increasing sequence of principal ideals is eventually constant), then proved that unique factorisation holds if and only if all irreducible elements … Continue reading

Posted in Notes | Tagged , , , , , , , , , | Leave a comment

Topics in Commutative Rings: Unique Factorisation (1)

Unique Factorisation: Basics Throughout this post, let R be an integral domain; recall that this means R is a commutative ring such that whenever ab=0, either a=0 or b=0. The simplest example of an integral domain is Z, the ring of integers. What’s of interest to … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment

Introduction to Ring Theory (1)

Recall that in groups, one has only a binary operation *. Rings are algebraic structures with addition and multiplication operations – and consistency is ensured by the distributive property. Definition. A ring R is a set together with two binary operations: … Continue reading

Posted in Notes | Tagged , , , , , , , , , , , | Leave a comment