
Recent Posts
Archives
 March 2023
 January 2023
 May 2020
 April 2020
 March 2020
 June 2018
 July 2016
 June 2016
 May 2016
 March 2015
 February 2015
 January 2015
 December 2014
 December 2013
 November 2013
 July 2013
 June 2013
 May 2013
 March 2013
 February 2013
 January 2013
 December 2012
 November 2012
 October 2012
 September 2012
 August 2012
 April 2012
 March 2012
 February 2012
 January 2012
 December 2011
 November 2011
 October 2011
Categories
Meta
Pages
Tag Archives: commutative rings
Commutative Algebra 16
Gcd and Lcm We assume A is an integral domain throughout this article. If A is a UFD, we can define the gcd (greatest common divisor) and lcm (lowest common multiple) of two elements as follows. For , we can write the … Continue reading
Commutative Algebra 3
Algebraic Geometry Concepts We have decided to introduce, at this early point, some basics of algebraic geometry in order to motivate the later concepts. In summary, algebraic geometry studies solutions to polynomial equations over a field. First we consider a … Continue reading
Posted in Advanced Algebra
Tagged algebraic geometry, commutative rings, ideals, nullstellensatz, radical ideals, rings, topology, zariski topology
Leave a comment
Commutative Algebra 2
Radical of an Ideal In this installation, we will study more on ideals of a ring A. Definition. If is an ideal, its radical is defined by To fix ideas, again consider the case again. For the ideal (m) where , … Continue reading
Posted in Advanced Algebra
Tagged commutative rings, ideal division, ideals, radical ideals, rings
Leave a comment
Commutative Algebra 0
We’re starting a new series on commutative algebra. This has been in the works for way too long, and eventually we just decided to push ahead with it anyway. Most of the articles will be short, and we’ll try to … Continue reading
Posted in Advanced Algebra
Tagged commutative rings, fields, ideals, integral domains, rings
2 Comments
Topics in Commutative Rings: Unique Factorisation (3)
Example 1: The Gaussian Integers Z[i] Let’s pick the norm function N : Z[i]{0} → N where N(a+bi) = (a+bi)(a–bi) = a2+b2. We know that N is a multiplicative function, i.e. N(r)N(s) = N(rs). Instead of checking this by brute force, we write N(x) = x·xc, where (a+bi)c = abi is the conjugate of a+bi. It’s easy to … Continue reading
Topics in Commutative Rings: Unique Factorisation (2)
In the previous article, we imposed certain finiteness conditions on the ring (specifically a.c.c. on principal ideals: that every increasing sequence of principal ideals is eventually constant), then proved that unique factorisation holds if and only if all irreducible elements … Continue reading
Posted in Notes
Tagged commutative rings, euclidean domains, irreducibles, prime ideals, primes, principal ideal domains, ring theory, rings, UFDs, unique factorisation
Leave a comment
Topics in Commutative Rings: Unique Factorisation (1)
Unique Factorisation: Basics Throughout this post, let R be an integral domain; recall that this means R is a commutative ring such that whenever ab=0, either a=0 or b=0. The simplest example of an integral domain is Z, the ring of integers. What’s of interest to … Continue reading
Posted in Notes
Tagged commutative rings, irreducibles, prime ideals, primes, ring theory, rings, UFDs, unique factorisation
Leave a comment
Introduction to Ring Theory (1)
Recall that in groups, one has only a binary operation *. Rings are algebraic structures with addition and multiplication operations – and consistency is ensured by the distributive property. Definition. A ring R is a set together with two binary operations: … Continue reading
Posted in Notes
Tagged advanced, characteristic, commutative rings, distributive property, division rings, fields, integral domains, quaternions, ring theory, rings, units, zerodivisors
Leave a comment