Tag Archives: commutative rings

Commutative Algebra 16

Gcd and Lcm We assume A is an integral domain throughout this article. If A is a UFD, we can define the gcd (greatest common divisor) and lcm (lowest common multiple) of two elements as follows. For , we can write the … Continue reading

Posted in Advanced Algebra | Tagged , , , , , , , | Leave a comment

Commutative Algebra 3

Algebraic Geometry Concepts We have decided to introduce, at this early point, some basics of algebraic geometry in order to motivate the later concepts. In summary, algebraic geometry studies solutions to polynomial equations over a field. First we consider a … Continue reading

Posted in Advanced Algebra | Tagged , , , , , , , | Leave a comment

Commutative Algebra 2

Radical of an Ideal In this installation, we will study more on ideals of a ring A. Definition. If is an ideal, its radical is defined by To fix ideas, again consider the case again. For the ideal (m) where , … Continue reading

Posted in Advanced Algebra | Tagged , , , , | Leave a comment

Commutative Algebra 0

We’re starting a new series on commutative algebra. This has been in the works for way too long, and eventually we just decided to push ahead with it anyway. Most of the articles will be short, and we’ll try to … Continue reading

Posted in Advanced Algebra | Tagged , , , , | 2 Comments

Topics in Commutative Rings: Unique Factorisation (3)

Example 1: The Gaussian Integers Z[i] Let’s pick the norm function N : Z[i]-{0} → N where N(a+bi) = (a+bi)(a–bi) = a2+b2. We know that N is a multiplicative function, i.e. N(r)N(s) = N(rs). Instead of checking this by brute force, we write N(x) = x·xc, where (a+bi)c = a-bi is the conjugate of a+bi. It’s easy to … Continue reading

Posted in Notes | Tagged , , , , , , , , , , , | Leave a comment

Topics in Commutative Rings: Unique Factorisation (2)

In the previous article, we imposed certain finiteness conditions on the ring (specifically a.c.c. on principal ideals: that every increasing sequence of principal ideals is eventually constant), then proved that unique factorisation holds if and only if all irreducible elements … Continue reading

Posted in Notes | Tagged , , , , , , , , , | Leave a comment

Topics in Commutative Rings: Unique Factorisation (1)

Unique Factorisation: Basics Throughout this post, let R be an integral domain; recall that this means R is a commutative ring such that whenever ab=0, either a=0 or b=0. The simplest example of an integral domain is Z, the ring of integers. What’s of interest to … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment

Introduction to Ring Theory (1)

Recall that in groups, one has only a binary operation *. Rings are algebraic structures with addition and multiplication operations – and consistency is ensured by the distributive property. Definition. A ring R is a set together with two binary operations: … Continue reading

Posted in Notes | Tagged , , , , , , , , , , , | Leave a comment