Tag Archives: maximal ideals

Commutative Algebra 14

Basic Open Sets For , let , an open subset of Spec A. Note that . Proposition 1. The collection of over all forms a basis for the topology of . Proof Let be an open subset of Spec A. Suppose … Continue reading

Posted in Advanced Algebra | Tagged , , , , , , , , | Leave a comment

Commutative Algebra 13

Zariski Topology for Rings In this article, we generalize earlier results in algebraic geometry to apply to general rings. Recall that points on an affine variety V correspond to maximal ideals . For general rings, we have to switch to … Continue reading

Posted in Advanced Algebra | Tagged , , , , , , | Leave a comment

Commutative Algebra 11

Coordinate Rings as k-algebras Let k be an algebraically closed field. Recall that a closed subset is identified by its coordinate ring k[V], which is a finitely generated k-algebra since Definition. An affine k-variety is a finitely generated k-algebra A which is … Continue reading

Posted in Advanced Algebra | Tagged , , , , , | Leave a comment

Introduction to Ring Theory (5)

Our first order of the day is to state the correspondence between the ideals and subrings of R/I and those of R. This is totally analogous to the case of groups. Theorem. Let I be an ideal of R. There are 1-1 … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment