Tag Archives: advanced

Topology: Continuous Maps

Continuity in Metric Spaces Following the case of real analysis, let’s define continuous functions via the usual ε-δ definition. Definition. Let (X, d) and (Y, d’) be two metric spaces. A function f : X → Y is said to be … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment

Topology: Disjoint Unions

Disjoint Unions Let X and Y be topological spaces and be a set-theoretic disjoint union. We wish to define a topology on Z in a most natural way. Definition. The topology on is defined to be: It’s almost trivial to check that this … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment

Topology: Product Spaces (I)

In this article, we consider the product of two topological spaces. To motivate our definition, we first begin with metric spaces (X, dX) and (Y, dY). Letting Z = X × Y be the set-theoretic product, we wish to define a metric on Z from dX and … Continue reading

Posted in Notes | Tagged , , , , , | Leave a comment

Topology: Subspaces

First, suppose (X, d) is a metric space. If Y is a subset of X, then one can restrict the metric to , i.e. for any , we set d’(y, y’) := d(y, y’). It’s not hard to show that the resulting function is a metric on Y. … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment

Burnside’s Lemma and Polya Enumeration Theorem (2)

[ Acknowledgement: all the tedious algebraic expansions in this article were performed by wolframalpha. ] Counting Graphs One of the most surprising applications of Burnside’s lemma and Polya enumeration theorem is in counting the number of graphs up to isomorphism. … Continue reading

Posted in Notes | Tagged , , , , , , , , | Leave a comment

Burnside’s Lemma and Polya Enumeration Theorem (1)

[ Note: this article assumes you know some rudimentary theory of group actions. ] Let’s consider the following combinatorial problem. Problem. ABC is a given equilateral triangle. We wish to colour each of the three vertices A, B and C by … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment

Basic Analysis: Closed Subsets and Uniform Continuity

Let’s consider another question: suppose f : D → R is continuous, where D is a subset of R. If (xn) is a sequence in D converging to some real L, is it true that (f(xn)) is also convergent? Now if L is in D, then we know that (f(xn)) → (f(L)). … Continue reading

Posted in Notes | Tagged , , , , , , | Leave a comment

Basic Analysis: Uniform Convergence

Once again, let be a subset. Suppose we now have a sequence of functions , where n = 1, 2, 3, … , such that for each x in D, the sequence converges to some real value. We’ll denote this value by f(x), thus … Continue reading

Posted in Notes | Tagged , , , , , , | 1 Comment

Basic Analysis: Differentiation (2)

Finding Extremum Points One of the most common applications of differentiation is in finding all local maximum and minimum points. Definition. We say f(x) has a local maximum (resp. minimum) at x=a, if there is an open interval (b, c) containing a, such … Continue reading

Posted in Notes | Tagged , , , , , | Leave a comment

Basic Analysis: Differentiation (1)

In this article, we’ll look at differentiation more rigourously and carefully. Throughout this article, we suppose f is a real-valued function defined on an open interval (b, c) containing a, i.e. f : (b, c) → R with b < a < c. Theorem. The derivative of f(x) at a is … Continue reading

Posted in Notes | Tagged , , , , , | Leave a comment