Tag Archives: metrisable topology

Topology: Separation Axioms

Motivation The separation axioms attempt to answer the following. Question. Given a topological space X, how far is it from being metrisable? We had a hint earlier: all metric spaces are Hausdorff, i.e. distinct points can be separated by two … Continue reading

Posted in Notes | Tagged , , , , , , , , , , , , | Leave a comment

Topology: Product Spaces (II)

The Box Topology Following an earlier article on products of two topological spaces, we’ll now talk about a product of possibly infinitely many topological spaces. Suppose is a collection of topological spaces indexed by I, and we wish to define … Continue reading

Posted in Notes | Tagged , , , , , , , , , | Leave a comment

Topology: Disjoint Unions

Disjoint Unions Let X and Y be topological spaces and be a set-theoretic disjoint union. We wish to define a topology on Z in a most natural way. Definition. The topology on is defined to be: It’s almost trivial to check that this … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment