Tag Archives: general linear group

Polynomials and Representations XXXIX

Some Invariant Theory We continue the previous discussion. Recall that for we have a -equivariant map which induces an isomorphism between the unique copies of in both spaces. The kernel Q of this map is spanned by for various fillings T with shape and entries … Continue reading

Posted in Uncategorized | Tagged , , , , , | Leave a comment

Polynomials and Representations XXXVIII

Determinant Modules We will describe another construction for the Schur module. Introduce variables for . For each sequence we define the following polynomials in : Now given a filling T of shape λ, we define: where is the sequence of entries from the … Continue reading

Posted in Uncategorized | Tagged , , , , , , | Leave a comment

Polynomials and Representations XXXVII

Notations and Recollections For a partition , one takes its Young diagram comprising of boxes. A filling is given by a function for some positive integer m. When m=d, we will require the filling to be bijective, i.e. T contains {1,…,d} and each element occurs exactly … Continue reading

Posted in Uncategorized | Tagged , , , , , , | Leave a comment

Polynomials and Representations XXXVI

V(λ) as Schur Functor Again, we will denote throughout this article. In the previous article, we saw that the Schur-Weyl duality can be described as a functor: given a -module M, the corresponding -module is set as  Definition. The construction is … Continue reading

Posted in Uncategorized | Tagged , , , , , , | Leave a comment

Polynomials and Representations XXXV

Schur-Weyl Duality Throughout the article, we denote for convenience. So far we have seen: the Frobenius map gives a correspondence between symmetric polynomials in  of degree d and representations of ; there is a correspondence between symmetric polynomials in and polynomial … Continue reading

Posted in Uncategorized | Tagged , , , , , , , | Leave a comment

Polynomials and Representations XXXIV

Twisting From the previous article, any irreducible polynomial representation of is of the form for some such that is the Schur polynomial . Now given any analytic representation V of G, we can twist it by taking for an integer k. Then: Twisting the irrep … Continue reading

Posted in Uncategorized | Tagged , , , , , , | Leave a comment

Polynomials and Representations XXXIII

We are back to the convention and We wish to focus on irreducible polynomial representations of G. The weak Peter-Weyl theorem gives: Theorem. Restricting the RHS to only polynomial irreducible V gives us on the LHS, where each polynomial in restricts to a function … Continue reading

Posted in Uncategorized | Tagged , , , , , , | Leave a comment