-
Recent Posts
Archives
- March 2023
- January 2023
- May 2020
- April 2020
- March 2020
- June 2018
- July 2016
- June 2016
- May 2016
- March 2015
- February 2015
- January 2015
- December 2014
- December 2013
- November 2013
- July 2013
- June 2013
- May 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
Categories
Meta
Pages
Tag Archives: symmetric group
Solving Permutation-Based Puzzles
Introduction In the previous article, we described the Schreier-Sims algorithm. Given a small subset which generates the permutation group G, the algorithm constructs a sequence such that for: we have a small generating set for each Specifically, via the Sims … Continue reading
Posted in Uncategorized
Tagged group actions, group theory, permutations, rubik's cube, schreier-sims, symmetric group
2 Comments
Polynomials and Representations XXXVII
Notations and Recollections For a partition , one takes its Young diagram comprising of boxes. A filling is given by a function for some positive integer m. When m=d, we will require the filling to be bijective, i.e. T contains {1,…,d} and each element occurs exactly … Continue reading
Polynomials and Representations XXXVI
V(λ) as Schur Functor Again, we will denote throughout this article. In the previous article, we saw that the Schur-Weyl duality can be described as a functor: given a -module M, the corresponding -module is set as Definition. The construction is … Continue reading
Polynomials and Representations XXXV
Schur-Weyl Duality Throughout the article, we denote for convenience. So far we have seen: the Frobenius map gives a correspondence between symmetric polynomials in of degree d and representations of ; there is a correspondence between symmetric polynomials in and polynomial … Continue reading
Polynomials and Representations XXXIV
Twisting From the previous article, any irreducible polynomial representation of is of the form for some such that is the Schur polynomial . Now given any analytic representation V of G, we can twist it by taking for an integer k. Then: Twisting the irrep … Continue reading
Polynomials and Representations XXVII
From the previous article, we have columns j < j’ in the column tabloid U, and given a set A (resp. B) of boxes in column j (resp. j’), we get: where is the column tabloid obtained by swapping contents of A with B while preserving the order. … Continue reading
Polynomials and Representations XXVI
Let us fix a filling of shape and consider the surjective homomorphism of -modules given by right-multiplying by Specifically, we will describe its kernel, which will have interesting consequences when we examine representations of later. Row and Column Tabloids By the … Continue reading
Posted in Uncategorized
Tagged partitions, representation theory, symmetric group, young symmetrizer, young tableaux
Leave a comment
Polynomials and Representations XXV
Properties of the Young Symmetrizer Recall that for a filling , we have the subgroup of elements which take an element of the i-th row (resp. column) of T to the i-th row (resp. column) of T. Then: where is the Young symmetrizer. … Continue reading
Posted in Uncategorized
Tagged partitions, representation theory, symmetric group, young symmetrizer, young tableaux
Leave a comment
Polynomials and Representations XXIV
Specht Modules Till now, our description of the irreps of are rather abstract. It would be helpful to have a more concrete construction of these representations – one way is via Specht modules. First write Thus if , the only common irrep between … Continue reading
Posted in Uncategorized
Tagged group actions, representation theory, symmetric group, young symmetrizer, young tableaux
Leave a comment
Polynomials and Representations XXIII
Power-Sum Polynomials We will describe how the character table of is related to the expansion of the power-sum symmetric polynomials in terms of monomials. Recall: where exactly since is not defined. Now each irrep of is of the form for some … Continue reading
Posted in Uncategorized
Tagged character theory, combinatorics, partitions, symmetric group, symmetric polynomials
Leave a comment