-
Recent Posts
Archives
- March 2023
- January 2023
- May 2020
- April 2020
- March 2020
- June 2018
- July 2016
- June 2016
- May 2016
- March 2015
- February 2015
- January 2015
- December 2014
- December 2013
- November 2013
- July 2013
- June 2013
- May 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
Categories
Meta
Pages
Tag Archives: induced modules
Commutative Algebra 56
Throughout this article, A denotes a noetherian ring and is a fixed ideal. All A-modules are finitely generated. Consequences of Artin-Rees Lemma Suppose we have an exact sequence of finitely generated A-modules Let M be given the 𝔞-adic filtration; the induced filtration on … Continue reading
Commutative Algebra 33
Snake Lemma Let us introduce a useful tool for computing kernels and cokernels in a complicated diagram of modules. Although it is only marginally useful for now, it will become a major tool in homological algebra. Snake Lemma. Suppose we … Continue reading
Commutative Algebra 29
Distributivity Finally, tensor product is distributive over arbitrary direct sums. Proposition 1. Given any family of modules , we have: Proof Take the map which takes . Note that this is well-defined: since only finitely many are non-zero, only finitely … Continue reading
Posted in Advanced Algebra
Tagged hom functor, induced modules, localization, right-exact, tensor products, yoneda lemma
2 Comments
Commutative Algebra 26
Left-Exact Functors We saw (in theorem 1 here) that the localization functor is exact, which gave us a whole slew of nice properties, including preservation of submodules, quotient modules, finite intersection/sum, etc. However, exactness is often too much to ask … Continue reading
Posted in Advanced Algebra
Tagged additive functors, hom functor, induced modules, left-exact, right-exact
Leave a comment
Commutative Algebra 24
Quotient vs Localization Taking the quotient and localization are two sides of the same coin when we look at . Quotient removes the “small” prime ideals in – it only keeps the prime ideals containing . Localization removes the “large” … Continue reading
Posted in Advanced Algebra
Tagged algebras, exact functors, induced modules, localization, universal properties
2 Comments