-
Recent Posts
Archives
- May 2020
- April 2020
- March 2020
- June 2018
- July 2016
- June 2016
- May 2016
- March 2015
- February 2015
- January 2015
- December 2014
- December 2013
- November 2013
- July 2013
- June 2013
- May 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
Categories
Meta
Pages
Tag Archives: modular representation theory
Modular Representation Theory (IV)
Continuing our discussion of modular representation theory, we will now discuss block theory. Previously, we saw that in any ring R, there is at most one way to write where is a set of orthogonal and centrally primitive idempotents. If such an … Continue reading
Modular Representation Theory (III)
Let’s work out some explicit examples of modular characters. First, we have a summary of the main results. Let be the modular characters of the simple k[G]-modules; they form a basis of Let be those of the projective indecomposable k[G]-modules; they form a basis … Continue reading
Modular Representation Theory (II)
We continue our discussion of modular representations; recall that all modules are finitely-generated even if we do not explicitly say so. First, we introduce a new notation: for each projective finitely-generated k[G]-module P, we have a unique projective finitely-generated R[G]-module denoted for which … Continue reading
Modular Representation Theory (I)
Let K be a field and G a finite group. We know that when char(K) does not divide |G|, the group algebra K[G] is semisimple. Conversely we have: Proposition. If char(K) divides |G|, then K[G] is not semisimple. Proof Let , a two-sided … Continue reading