-
Recent Posts
Archives
- March 2023
- January 2023
- May 2020
- April 2020
- March 2020
- June 2018
- July 2016
- June 2016
- May 2016
- March 2015
- February 2015
- January 2015
- December 2014
- December 2013
- November 2013
- July 2013
- June 2013
- May 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
Categories
Meta
Pages
Author Archives: limsup
Polynomials and Representations III
Complete Symmetric Polynomials Corresponding to the elementary symmetric polynomial, we define the complete symmetric polynomials in to be: For example when , we have: Thus, written as a sum of monomial symmetric polynomials, we have Note that while the elementary symmetric polynomials only go … Continue reading
Posted in Uncategorized
Tagged combinatorics, partitions, polynomials, representation theory, symmetric polynomials
Leave a comment
Polynomials and Representations II
More About Partitions Recall that a partition is a sequence of weakly decreasing non-negative integers, where appending or dropping ending zeros gives us the same partition. A partition is usually represented graphically as a table of boxes or dots: We will … Continue reading
Posted in Uncategorized
Tagged combinatorics, partitions, polynomials, representation theory, symmetric polynomials
Leave a comment
Polynomials and Representations I
We have already seen symmetric polynomials and some of their applications in an earlier article. Let us delve into this a little more deeply. Consider the ring of integer polynomials. The symmetric group acts on it by permuting the variables; specifically, … Continue reading
Posted in Uncategorized
Tagged combinatorics, partitions, polynomials, representation theory, symmetric polynomials
4 Comments
Modular Representation Theory (IV)
Continuing our discussion of modular representation theory, we will now discuss block theory. Previously, we saw that in any ring R, there is at most one way to write where is a set of orthogonal and centrally primitive idempotents. If such an … Continue reading
Idempotents and Decomposition
Let R be a general ring, not necessarily commutative. An element x∈R is said to be idempotent if x2 = x. Note An endomorphism f of an R-module M (i.e. ) is an idempotent if and only if f is a projection, i.e. M = ker(f) ⊕ im(f) and f … Continue reading
Posted in Notes
Tagged blocks, idempotents, indecomposable modules, modules, primitive idempotents
Leave a comment
Modular Representation Theory (III)
Let’s work out some explicit examples of modular characters. First, we have a summary of the main results. Let be the modular characters of the simple k[G]-modules; they form a basis of Let be those of the projective indecomposable k[G]-modules; they form a basis … Continue reading
Modular Representation Theory (II)
We continue our discussion of modular representations; recall that all modules are finitely-generated even if we do not explicitly say so. First, we introduce a new notation: for each projective finitely-generated k[G]-module P, we have a unique projective finitely-generated R[G]-module denoted for which … Continue reading
Modular Representation Theory (I)
Let K be a field and G a finite group. We know that when char(K) does not divide |G|, the group algebra K[G] is semisimple. Conversely we have: Proposition. If char(K) divides |G|, then K[G] is not semisimple. Proof Let , a two-sided … Continue reading
Projective Modules and the Grothendieck Group
This is a continuation of the previous article. Throughout this article, R is an artinian ring (and hence noetherian) and all modules are finitely-generated. Let K(R) be the Grothendieck group of all finitely-generated R-modules; K(R) is the free abelian group generated by [M] for simple … Continue reading
Posted in Notes
Tagged artinian, composition series, grothendieck group, projective modules
Leave a comment
Projective Modules and Artinian Rings
Projective Modules Recall that Hom(M, -) is left-exact: for any module M and exact , we get an exact sequence Definition. A module M is projective if Hom(M, -) is exact, i.e. if for any surjective N→N”, the resulting HomR(M, N) → HomR(M, N”) is … Continue reading
Posted in Notes
Tagged artinian, free modules, left-exact, projective modules, semisimple rings, splitting lemma
2 Comments