Monthly Archives: February 2013

Topology: Nets and Points of Accumulation

Recall that a sequence in a topological space X converges to a in X if the function f : N* → X which takes is continuous at . Unrolling the definition, it means that for any open subset U of X containing a, the set contains (N, ∞] for some N. In … Continue reading

Posted in Notes | Tagged , , , , , , , , , | Leave a comment

Topology: Limits and Convergence

Following what we did for real analysis, we have the following definition of limits. Definition of Limits. Let X, Y be topological spaces and . If  f : X-{a} → Y is a function, then we write if the function: is … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment