-
Recent Posts
Archives
- March 2023
- January 2023
- May 2020
- April 2020
- March 2020
- June 2018
- July 2016
- June 2016
- May 2016
- March 2015
- February 2015
- January 2015
- December 2014
- December 2013
- November 2013
- July 2013
- June 2013
- May 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
Categories
Meta
Pages
Tag Archives: unique factorisation
Commutative Algebra 46
Properties of Dedekind Domains Throughout this article, A denotes a Dedekind domain. Proposition 1. Every fractional ideal of A can be written as where each is a maximal ideal. The expression is unique up to permutation of terms. Note In … Continue reading
Commutative Algebra 17
Field of Fractions Throughout this article, A denotes an integral domain (which may not be a UFD). Definition. The field of fractions of A is an embedding of A into a field K, such that every element of K can be … Continue reading
Posted in Advanced Algebra
Tagged field of fractions, gauss lemma, krull dimension, primes, principal ideal domains, UFDs, unique factorisation
6 Comments
Commutative Algebra 16
Gcd and Lcm We assume A is an integral domain throughout this article. If A is a UFD, we can define the gcd (greatest common divisor) and lcm (lowest common multiple) of two elements as follows. For , we can write the … Continue reading
Commutative Algebra 15
Unique Factorization Through this article and the next few ones, we will explore unique factorization in rings. The inspiration, of course, comes from ℤ. Here is an application of unique factorization. Warning: not all steps may make sense to the … Continue reading
Posted in Advanced Algebra
Tagged integral domains, irreducibles, noetherian, primes, UFDs, unique factorisation
Leave a comment
Krull-Schmidt Theorem
Here, we will prove that the process of decomposing is unique, given that M is noetherian and artinian. Again, R is a ring, possibly non-commutative. Definition. A decomposition of an R-module M is an expression for non-zero modules An R-module M is said … Continue reading
Posted in Notes
Tagged indecomposable modules, krull-schmidt, local rings, matrix rings, splitting lemma, unique factorisation
Leave a comment
Composition Series
Positive integers can be uniquely factored as a product of primes. Here, we would like to prove a counterpart for modules. Now there are two ways to “factor” a module M; a more liberal way takes a submodule N which gives us composition … Continue reading
Posted in Notes
Tagged algebra, artinian, composition series, length of module, matrix rings, modules, noetherian, unique factorisation
Leave a comment
Topics in Commutative Rings: Unique Factorisation (3)
Example 1: The Gaussian Integers Z[i] Let’s pick the norm function N : Z[i]-{0} → N where N(a+bi) = (a+bi)(a–bi) = a2+b2. We know that N is a multiplicative function, i.e. N(r)N(s) = N(rs). Instead of checking this by brute force, we write N(x) = x·xc, where (a+bi)c = a-bi is the conjugate of a+bi. It’s easy to … Continue reading
Topics in Commutative Rings: Unique Factorisation (2)
In the previous article, we imposed certain finiteness conditions on the ring (specifically a.c.c. on principal ideals: that every increasing sequence of principal ideals is eventually constant), then proved that unique factorisation holds if and only if all irreducible elements … Continue reading
Posted in Notes
Tagged commutative rings, euclidean domains, irreducibles, prime ideals, primes, principal ideal domains, ring theory, rings, UFDs, unique factorisation
Leave a comment
Topics in Commutative Rings: Unique Factorisation (1)
Unique Factorisation: Basics Throughout this post, let R be an integral domain; recall that this means R is a commutative ring such that whenever ab=0, either a=0 or b=0. The simplest example of an integral domain is Z, the ring of integers. What’s of interest to … Continue reading
Posted in Notes
Tagged commutative rings, irreducibles, prime ideals, primes, ring theory, rings, UFDs, unique factorisation
Leave a comment