-
Recent Posts
Archives
- March 2023
- January 2023
- May 2020
- April 2020
- March 2020
- June 2018
- July 2016
- June 2016
- May 2016
- March 2015
- February 2015
- January 2015
- December 2014
- December 2013
- November 2013
- July 2013
- June 2013
- May 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
Categories
Meta
Pages
Tag Archives: ideals
Elementary Module Theory (I)
Modules can be likened to “vector spaces for rings”. To be specific, we shall see later that a vector space is precisely a module over a field (or in some cases, a division ring). This set of notes assumes the … Continue reading
Posted in Notes
Tagged generated submodules, ideals, left ideals, modules, rings, scalar multiplication, simple modules, submodules
Leave a comment
Introduction to Ring Theory (5)
Our first order of the day is to state the correspondence between the ideals and subrings of R/I and those of R. This is totally analogous to the case of groups. Theorem. Let I be an ideal of R. There are 1-1 … Continue reading
Posted in Notes
Tagged advanced, chinese remainder theorem, ideals, maximal ideals, prime ideals, ring theory, rings
Leave a comment
Introduction to Ring Theory (3)
Ideals and Ring Quotients Suppose I is a subgroup of (R, +). Since + is abelian, I is automatically a normal subgroup and we get the group quotient (R/I, +). One asks when we can define the product operation on R/I. To be specific, each … Continue reading
Posted in Notes
Tagged advanced, gaussian integers, generated ideals, ideals, principal ideals, ring quotients, ring theory
Leave a comment