Tag Archives: totally disconnected spaces

Topology: Locally Connected and Locally Path-Connected Spaces

Locally Connected Spaces Recall that each topological space X is the set-theoretic disjoint union of its connected components, but in general (e.g. for X=Q) fails to be the topological disjoint union. The problem is that the connected components in general aren’t open … Continue reading

Posted in Notes | Tagged , , , , , , , , | 4 Comments

Topology: Connected Spaces

Let X be a topological space. Recall that if U is a clopen (i.e. open and closed) subset of X, then X is the topological disjoint union of U and X–U. Hence, if we assume X cannot be decomposed any further, there’re no non-trivial clopen subsets of X. … Continue reading

Posted in Notes | Tagged , , , , , , , | Leave a comment