-
Recent Posts
Archives
- March 2023
- January 2023
- May 2020
- April 2020
- March 2020
- June 2018
- July 2016
- June 2016
- May 2016
- March 2015
- February 2015
- January 2015
- December 2014
- December 2013
- November 2013
- July 2013
- June 2013
- May 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
Categories
Meta
Pages
Tag Archives: calculus
Thinking Infinitesimally – Multivariate Calculus (II)
Chain Rule for Multivariate Calculus We continue our discussion of multivariate calculus. The first item here is the analogue of Chain Rule for the multivariate case. Suppose we have parameters f, u, v, x, y, z. Suppose {u, v} are independent parameters (in particular, … Continue reading
Thinking Infinitesimally – Multivariate Calculus (I)
[ Background required: some understanding of single-variable calculus, including differentiation and integration. ] The object of this series of articles is to provide a rather different point-of-view to multivariate calculus, compared to the conventional approach in calculus texts. The typical … Continue reading
Posted in Notes
Tagged calculus, differentiation, intermediate, multivariate, partial differentiation
Leave a comment
What is Curvature? (II)
[ Background required: rudimentary vector calculus. ] The aforementioned definition of curvature is practical but a little aesthetically displeasing. Specifically, one seeks a definition which is independent of the parametrization of the curve. The advantage of such a definition is … Continue reading
What is Curvature? (I)
[ Background required: calculus, specifically differentiation. ] In this post, we will give a little background intuition on the definition of curvature. One possible approach is given in wikipedia, ours is another. Note that this is not IMO-related (my apologies … Continue reading
Estimating Sums Via Integration
Background required : calculus, specifically integration By representing a sum as an area, it is often possible to estimate its size by approximating it with the area underneath a curve. For example, suppose we wish to compute the sum . … Continue reading
Number Theory and Calculus/Analysis
Background required: modular arithmetic, calculus. Once in a while, I’ll post something which offers a glimpse into more advanced mathematics. Here’s one. Example 1 For starters, we know from basic algebra that . Let’s see if there’s a corresponding result … Continue reading