Tag Archives: group theory

Intermediate Group Theory (4)

Applications We’ll use the results that we obtained in the previous two posts to obtain some very nice results about finite groups. Example 1. A finite group G of order p2 is isomorphic to either Z/p2 or (Z/p) × (Z/p). In particular, it … Continue reading

Intermediate Group Theory (3)

Automorphisms and Conjugations of G We’ve seen how groups can act on sets via bijections. If the underlying set were endowed with a group structure, we can restrict our attention to bijections which preserve the group operation. Definition. An automorphism of … Continue reading

Intermediate Group Theory (2)

This is a continuation from the previous post. Let G act on set X, but now we assume that both G and X are finite. Since X is a disjoint union of transitive G-sets, and each transitive G-set is isomorphic to G/H for some subgroup H ≤ G, it follows that … Continue reading

Intermediate Group Theory (0)

Let’s take stock of what we know about group theory so far in the first series. We defined a group, which is a set endowed with a binary operation satisfying 3 properties. For each group, we considered subsets which could … Continue reading

Casual Introduction to Group Theory (6)

Homomorphisms [ This post roughly corresponds to Chapter VI of the old blog. ] For sets, one considers functions f : S → T between them. For groups, one would like to consider only actions which respect the group operation. Definition.  Let G and … Continue reading