Lindström–Gessel–Viennot Lemma
Let us switch gears and describe a beautiful combinatorial result. Suppose is a graph which is directed, has no cycles, and there are only finitely many paths from a vertex to another. Given sets of n vertices:
the lemma computes the “weighted sum” of non-intersecting paths from to
.
To be specific, suppose each edge of the graph has a weight
which takes values in a fixed ring. Given a directed path
from
to
let
be the product of the edges along the path
. Now write
for the sum of
over all
Next given above, we compute the determinant of:
On the other hand, consider a collection of paths where each
for some permutation
Furthermore we want the paths to be pairwise non-intersecting, i.e. no two paths contain a common vertex (not even at the endpoints). Now we can state the desired result.
Lindström–Gessel–Viennot (LGV) Lemma. We have:
over all tuples of paths
described above.
Proof of the LGV Lemma
First expand the determinant of ; each term is of the form:
Expanding each , the above term is a sum of terms of the form
summed over all n-tuples This is close to the desired result but here, the
may intersect. Hence, we wish to show that the sum over all
for which some
and
intersect, vanishes.
Let be the collection of all such paths; for each
we:
- let
be the first vertex occurring as an intersection between
and
(
), after taking a total ordering for the set of vertices;
- let
be the smallest index such that
contains
;
- let
be the largest index such that
contains
(note that
);
and get a triplet Now let
be the same tuple of paths but with the tails of
and
switched after
This gives a map , which is an involution since the corresponding triplet for
is still
However
and
have opposite signs. Denoting
by
we have
and so:
So the sum is zero. ♦
Jacobi-Trudi Identities
Here is our first application of the LGV lemma; all computations are in the formal ring
Theorem. Let
be the transpose of
. Then
is the determinant of either of these matrices.
where
is chosen to be
and
in the respective cases.
Note
One remembers the structure of the matrices by writing as the subscripts for the diagonal entries, then incrementing to the right. We take
for all
Observe that since
, there is no harm increasing
by appending zeros to the partition.
Proof
We can obtain the second identity from the first by applying , so let us show the first. Before we begin, observe that the Schur polynomial can be written as:
where Indeed, this follows from the proposition here.
We will use the LGV lemma: let be large; we take the following graph.
- The vertices are lattice points in
.
- The starting and ending vertices are given by:
- The edges are of one unit, directed either eastwards or southwards. The southward edges are weighted 1 while the eastward edges on
are labelled
for
For example if , here is an example of paths connecting
Let us compute the LHS of the LGV lemma. The set of paths from to
sums up to the complete symmetric polynomial
. Thus the LHS is the desired determinant expression.
On the other hand, let us consider the collection of non-intersecting paths from to
. For a path to exist,
must be the identity. Each collection of non-intersecting paths corresponds to a reverse SSYT of shape
(i.e. the rows are weakly decreasing and columns are strictly decreasing). E.g. the above diagram gives:
Hence, the RHS in the LGV lemma equals the sum of over all reverse SSYT
of shape
This is equal to the sum over all SSYT
of shape
(we take
to be the minimum and maximum elements of the table respectively and replace each
with
thus obtaining an SSYT). Thus the sum is
♦