Monthly Archives: June 2016

Polynomials and Representations XXVI

Let us fix a filling of shape and consider the surjective homomorphism of -modules given by right-multiplying by Specifically, we will describe its kernel, which will have interesting consequences when we examine representations of later. Row and Column Tabloids By the … Continue reading

Posted in Uncategorized | Tagged , , , , | Leave a comment

Polynomials and Representations XXV

Properties of the Young Symmetrizer Recall that for a filling , we have the subgroup of elements which take an element of the i-th row (resp. column) of T to the i-th row (resp. column) of T. Then: where  is the Young symmetrizer. … Continue reading

Posted in Uncategorized | Tagged , , , , | Leave a comment

Polynomials and Representations XXIV

Specht Modules Till now, our description of the irreps of are rather abstract. It would be helpful to have a more concrete construction of these representations – one way is via Specht modules. First write Thus if , the only common irrep between … Continue reading

Posted in Uncategorized | Tagged , , , , | Leave a comment

Polynomials and Representations XXIII

Power-Sum Polynomials We will describe how the character table of is related to the expansion of the power-sum symmetric polynomials in terms of monomials. Recall: where exactly since is not defined. Now each irrep of is of the form  for some … Continue reading

Posted in Uncategorized | Tagged , , , , | Leave a comment

Polynomials and Representations XXII

Product of Representations Recall that the Frobenius map gives an isomorphism of abelian groups: Let us compute what the product corresponds to on the RHS. For that, we take and where and Multiplication gives where is the partition obtained by sorting Next, we … Continue reading

Posted in Uncategorized | Tagged , , , , , , | Leave a comment